Product Description
OEM Industrial Iron Transmission Timing Belt Pulleys with RoHS
Synchronous belt pulley transmission is composed of an annular belt with equidistant teeth on the inner peripheral surface and a belt pulley with corresponding teeth. During operation, the belt teeth mesh with the tooth slots of the belt pulley to transmit motion and power. It is a new belt transmission that integrates the respective advantages of belt transmission, chain transmission and gear transmission.
Product Parameters
Product | standard timing belt pulley & idler pulley |
Customized | OEM, drawings or samples customized |
Teeth type | Normal Torque Drive Type:MXL,XL,L,H,XH,XXH High Torque Drive Type:S2M,S3M,S5M,S8M,HTD2M,HTD3M,HTD5M,HTD8M,P2M,P3M,P5M,P8M High Precision Position Drive Type:2GT,3GT,5GT,8YU Light Load Drive Type:T5,T10,T20 Heavy Load Drive Type:AT5,AT10,AT20 |
Basic shape | Type A,Type B,Type D,Type E,Type F,Type K |
Adaption | Adapt to 1/4 inch,5/16 inch,1/2 inch, 3/8inch, 2/25inch, 1/5inch belt |
surface treatment | Natural color anodizing,Black anodizing,Hard anodizing,Ni-plating,Blackening |
Material | 6061(aluminum),S45C(45# steel),SUS304(Stainless steel) |
Bore | Pilot bore, Taper bore and Customized bore. |
Tolerance Control | Outer diameter ±0.005mm Length dimension ±0.05mm |
Standard | DIN, ISO/GB, AGMA, JIS |
Teeth Accuracy | DIN Class 4, ISO/GB Classs 4, AGMA Class 13, JIS Class 0 |
Weight | Max 15Tons |
testing equipment | projecting apparatus,salt spray test,durometer,and coating thickness tester,2D projector |
producing equipment | CNC machine,automatic lathe machine,stamping machine,CNC milling machine,rolling machine,lasering,tag grinding machine etc. |
Machining Process | Gear Hobbing, Gear Milling, Gear Shaping, Gear Broaching,Gear Shaving, Gear Grinding and Gear Lapping |
Application industry | Robot industry,Medical industry,Making machine industry,Automation industry,3C industry equipment,Packaging industry,UAV industry,New energy industry. |
Company Profile
Packaging & Shipping
lead time | 10-15 working days as usual,30days in busy season,it will based on the detailed order quantity |
Delivery of samples | by DHL,Fedex,UPS,TNT,EMS |
FAQ
Main markets | Southeast Asia, North America, Eastern Europe, Mid-East, West Europe |
How to order | *You send us drawing or sample |
*We carry through project assessment | |
*We give you our design for your confirmation | |
*We make the sample and send it to you after you confirmed our design | |
*You confirm the sample then place an order and pay us 30% deposit | |
*We start producing | |
*When the goods is done,you pay us the balance after you confirmed pictures or tracking numbers | |
*Trade is done,thank you! |
Certification: | ISO9001:2008 |
---|---|
Pulley Sizes: | Type A |
Manufacturing Process: | Forging |
Material: | Aluminium Alloy |
Surface Treatment: | Polishing |
Application: | Chemical Industry, Grain Transport, Mining Transport, Automation Equipment |
Samples: |
US$ 10/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Can timing pulleys be customized for specific applications?
Yes, timing pulleys can be customized to suit specific applications and requirements. Here’s how timing pulleys can be customized:
1. Size and Dimensions:
Timing pulleys can be customized in terms of their size and dimensions to fit specific shaft diameters, spacing, and clearance requirements. Customization allows engineers to ensure proper alignment and integration of the pulley within the system.
2. Tooth Profile:
The tooth profile of a timing pulley can be customized based on the specific power transmission needs of the application. Different tooth profiles, such as trapezoidal, curvilinear, or modified curvilinear, offer varying levels of engagement, load capacity, and noise characteristics. Customizing the tooth profile allows for optimized performance and efficiency.
3. Material Selection:
Timing pulleys can be customized by selecting the appropriate material based on the application’s requirements. Different materials, such as steel, aluminum, plastic, or composites, offer varying levels of strength, durability, corrosion resistance, and temperature tolerance. Customizing the material ensures compatibility with the operating conditions and environment.
4. Coatings and Surface Treatments:
Custom coatings and surface treatments can be applied to timing pulleys to enhance their performance and longevity. These treatments include but are not limited to hard anodizing, zinc plating, nitriding, or specific coatings for reduced friction, wear resistance, or improved tooth engagement.
5. Flanges and Attachments:
Timing pulleys can be customized with flanges or attachments to facilitate proper belt tracking, prevent belt slippage, or accommodate specific mounting requirements. These additions help ensure reliable and stable power transmission in the application.
6. Keyways and Hubs:
Custom keyways and hubs can be incorporated into timing pulleys to provide precise shaft-to-pulley connection and prevent slippage or misalignment. Keyways and hubs allow for secure and accurate power transmission in applications that require high torque or precise positioning.
7. Prototype and Low-Volume Production:
Timing pulleys can be customized through prototyping and low-volume production processes. This allows for the creation of unique designs, iterations, and testing before full-scale production. Customization at these stages ensures that the final timing pulleys meet the specific requirements of the application.
By offering customization options, timing pulley manufacturers and suppliers can cater to a wide range of industries and applications, including automotive, aerospace, robotics, industrial automation, medical, and more. Customized timing pulleys provide engineers with the flexibility to design systems that meet precise power transmission needs, resulting in optimized performance, reliability, and efficiency.
How do timing pulleys impact the performance of 3D printers?
Timing pulleys play a significant role in determining the performance and accuracy of 3D printers. Here’s an explanation of how timing pulleys impact the performance of 3D printers:
1. Motion Control:
Timing pulleys, in conjunction with belts or chains, are used to control the movement of the print head and build platform in 3D printers. The motor drives the driving pulley, which is connected to the print head or build platform through a timing belt or chain. The driven pulley on the print head or build platform receives the rotational motion from the driving pulley, resulting in precise and synchronized movement. The accuracy and quality of the printed object depend on the precise control and synchronization facilitated by the timing pulleys.
2. Positioning Accuracy:
Timing pulleys contribute to the positioning accuracy of 3D printers. The teeth on the timing belt or chain mesh with the teeth on the pulleys, creating positive engagement. This ensures that the print head or build platform moves precisely according to the instructions from the control system. The accuracy of the timing pulley system directly affects the dimensional accuracy and surface finish of the printed object.
3. Speed and Acceleration:
Timing pulleys allow for control of the speed and acceleration of the print head and build platform in 3D printers. By varying the diameter or the number of teeth on the pulleys, different gear ratios can be achieved. This enables printers to control the speed and acceleration of the print head or build platform, affecting printing time, print quality, and the ability to handle intricate details and complex geometries.
4. Print Resolution:
The resolution of a 3D printer refers to the smallest feature size that can be accurately reproduced. Timing pulleys play a role in determining the achievable print resolution. The finer the pitch and the more teeth per unit length on the timing belt or chain, the higher the resolution that can be achieved. Timing pulleys with smaller teeth allow for finer positioning and more precise movement, enabling the printer to produce objects with intricate details and smooth surfaces.
5. Noise and Vibration:
Properly designed and maintained timing pulley systems contribute to reducing noise and vibration in 3D printers. Well-aligned and tensioned timing belts or chains, along with accurately machined pulleys, minimize backlash and ensure smooth and quiet operation. This is particularly important during rapid movements and changes in direction, as excessive noise and vibration can affect print quality and overall printer performance.
6. Maintenance and Durability:
The durability and maintenance requirements of the timing pulley system impact the overall performance of 3D printers. High-quality timing pulleys and belts or chains are essential to ensure longevity and reliable operation. Regular inspection, tensioning, and replacement of worn or damaged components are necessary to maintain optimal performance and prevent print quality issues caused by a degraded timing pulley system.
7. Extruder and Filament Control:
In addition to controlling the movement of the print head and build platform, timing pulleys may also be used in the extruder assembly of 3D printers. Timing pulleys help drive the filament feeding mechanism, ensuring consistent and controlled extrusion of the filament during the printing process. The accurate and synchronized movement facilitated by the timing pulleys contributes to maintaining filament tension and preventing issues such as under-extrusion or filament jams.
By understanding the impact of timing pulleys on 3D printer performance, manufacturers and users can optimize the design, calibration, and maintenance of the timing pulley systems to achieve accurate, reliable, and high-quality 3D prints.
How does a timing pulley differ from a standard pulley?
A timing pulley differs from a standard pulley in design and functionality. While both types of pulleys are used in mechanical systems, they serve different purposes and have distinct features. Here’s an explanation of the key differences between a timing pulley and a standard pulley:
1. Toothed Profile:
The most significant difference between a timing pulley and a standard pulley is the presence of teeth on the timing pulley. Timing pulleys have grooves or teeth on their circumferential surface that mesh with corresponding teeth on timing belts. This toothed profile enables positive engagement between the pulley and the belt, providing precise motion and preventing slippage. In contrast, standard pulleys typically have a smooth or V-shaped groove that allows for the use of flat belts or V-belts, which rely on friction for power transmission.
2. Synchronization and Timing:
Timing pulleys are specifically designed for applications that require accurate timing and synchronization. The teeth on the timing pulley mesh with the teeth on the timing belt, creating a positive drive system. This ensures that the rotational motion of the driving pulley is transferred precisely to the driven pulleys, maintaining synchronization and accurate timing. Standard pulleys, on the other hand, do not provide this level of precise timing and are commonly used in applications where synchronization is not critical.
3. Power Transmission:
A timing pulley is primarily used for power transmission in applications that require precise motion control. The positive engagement between the teeth of the timing pulley and the timing belt ensures efficient power transfer without slippage. This is particularly important in applications where accurate speed ratios and torque transmission are necessary. Standard pulleys, while also used for power transmission, rely on friction between the pulley and the belt for power transfer, which may result in some slippage under heavy loads or high speeds.
4. Customization and Configurations:
Timing pulleys offer a wide range of customization options to meet specific application requirements. They can be manufactured with different tooth profiles, pitch sizes, and numbers of teeth to achieve the desired speed ratios and torque transmission. Standard pulleys, on the other hand, have fewer customization options and are generally available in standard sizes and configurations.
5. Maintenance and Reliability:
Timing pulleys and timing belts require less maintenance compared to standard pulleys and belts. The toothed profile of timing pulleys prevents slippage, reducing the need for frequent tension adjustments. Additionally, the positive engagement between the timing pulley and the timing belt ensures reliable power transmission with minimal wear and elongation of the belt.
Overall, the main differences between a timing pulley and a standard pulley lie in their toothed profile, synchronization capabilities, precise timing, customization options, and maintenance requirements. Timing pulleys are specifically designed for applications that demand accurate motion control and synchronization, while standard pulleys are more commonly used where precise timing is not critical.
editor by CX
2023-09-19