Product Description
CHINAMFG Machinery offers a wide range of high quality Timing Belt Pulleys and Toothed Bars/ Timing Bars. Standard and non-standard pulleys according to drawings are available.
Types of material:
1. AlCuMgPb 6061 6082 Aluminum Timing Pulley
2. C45E 1045 S45C Carbon Steel Timing Pulley
3. GG25 HT250 Cast Iron Timing Pulley
4. SUS303 SUS304 AISI431 Stainless Steel Timing Pulley
5. Other material on demand, such as cooper, bronze and plastic
Types of surface treatment
1. Anodized surface –Aluminum Pulleys
2. Hard anodized surface — Aluminum Pulleys
3. Black Oxidized surface — Steel Pulleys
4. Zinc plated surface — Steel Pulleys
5. Chromate surface — Steel Pulleys; Cast Iron Pulleys
6. Nickel plated surface –Steel Pulleys; Cast Iron Pulleys
Types of teeth profile
Teeth Profile | Pitch |
HTD | 3M,5M,8M,14M,20M |
AT | AT5,AT10,AT20 |
T | T2.5,T5,T10 |
MXL | 0.08″(2.032MM) |
XL | 1/5″(5.08MM) |
L | 3/8″(9.525MM) |
H | 1/2″(12.7MM) |
XH | 7/8″(22.225MM) |
XXH | 1 1/4″(31.75MM) |
STS STPD | S2M,S3M,S4.5M,S5M,S8M,S14M |
RPP | RPP5M,RPP8M,RPP14M,RPP20M |
PGGT | PGGT 2GT, 3GT and 5GT |
PCGT | GT8M,GT14M |
Types of pitches and sizes
Imperial Inch Timing Belt Pulley,
1. Pilot Bore MXL571 for 6.35mm timing belt; teeth number from 16 to 72;
2. Pilot Bore XL037 for 9.53mm timing belt; teeth number from 10 to 72;
3. Pilot Bore, Taper Bore L050 for 12.7mm timing belt; teeth number from 10 to 120;
4. Pilot Bore, Taper Bore L075 for 19.05mm timing belt; teeth number from 10 to 120;
5. Pilot Bore, Taper Bore L100 for 25.4mm timing belt; teeth number from 10 to 120;
6. Pilot Bore, Taper Bore H075 for 19.05mm timing belt; teeth number from 14 to 50;
7. Pilot Bore, Taper Bore H100 for 25.4mm timing belt; teeth number from 14 to 156;
8. Pilot Bore, Taper Bore H150 for 38.1mm timing belt; teeth number from 14 to 156;
9. Pilot Bore, Taper Bore H200 for 50.8mm timing belt; teeth number from 14 to 156;
10. Pilot Bore, Taper Bore H300 for 76.2mm timing belt; teeth number from 14 to 156;
11. Taper Bore XH200 for 50.8mm timing belt; teeth number from 18 to 120;
12. Taper Bore XH300 for 76.2mm timing belt; teeth number from 18 to 120;
13. Taper Bore XH400 for 101.6mm timing belt; teeth number from 18 to 120;
Metric Timing Belt Pulley T and AT
1. Pilot Bore T2.5-16 for 6mm timing belt; teeth number from 12 to 60;
2. Pilot Bore T5-21 for 10mm timing belt; teeth number from 10 to 60;
3. Pilot Bore T5-27 for 16mm timing belt; teeth number from 10 to 60;
4. Pilot Bore T5-36 for 25mm timing belt; teeth number from 10 to 60;
5. Pilot Bore T10-31 for 16mm timing belt; teeth number from 12 to 60;
6. Pilot Bore T10-40 for 25mm timing belt; teeth number from 12 to 60;
7. Pilot Bore T10-47 for 32mm timing belt; teeth number from 18 to 60;
8. Pilot Bore T10-66 for 50mm timing belt; teeth number from 18 to 60;
9. Pilot Bore AT5-21 for 10mm timing belt; teeth number from 12 to 60;
10. Pilot Bore AT5-27 for 16mm timing belt; teeth number from 12 to 60;
11. Pilot Bore AT5-36 for 25mm timing belt; teeth number from 12 to 60;
12. Pilot Bore AT10-31 for 16mm timing belt; teeth number from 15 to 60;
13. Pilot Bore AT10-40 for 25mm timing belt; teeth number from 15 to 60;
14. Pilot Bore AT10-47 for 32mm timing belt; teeth number from 18 to 60;
15. Pilot Bore AT10-66 for 50mm timing belt; teeth number from 18 to 60;
Metric Timing Belt Pulley HTD3M, 5M, 8M, 14M
1. HTD3M-06; 3M-09; 3M-15; teeth number from 10 to 72;
2. HTD5M-09; 5M-15; 5M-25; teeth number from 12 to 72;
3. HTD8M-20; 8M-30; 8M-50; 8M-85 teeth number from 22 to 192;
4. HTD14M-40; 14M-55; 14M-85; 14M-115; 14M-170; teeth number from 28-216;
5. Taper Bore HTD5M-15; 8M-20; 8M-30; 8M-50; 8M-85; 14M-40; 14M-55; 14M-85;
14M-115; 14M-170
Metric Timing Belt Pulleys for Poly Chain GT2 Belts
1. PCGT8M-12; PCGT8M-21; PCGT8M-36; PCGT8M-62;
2. PCGT14M-20; PCGT14M-37; PCGT14M-68; PCGT14M-90; PCGT14M-125;
Power Grip CHINAMFG Tooth/ PGGT 2GT, 3GT and 5GT
1. 2GT-06, 2GT-09 for timing belt width 6mm and 9mm
2. 3GT-09, 3GT-15 for timing belt width 9mm and 15mm
3. 5GT-15, 5GT-25 for timing belt width 15mm and 25mm
OMEGA RPP HTD Timing Pulleys
1. RPP3M-06; 3M-09; 3M-15; teeth number from 10 to 72;
2. RPP5M-09; 5M-15; 5M-25; teeth number from 12 to 72;
3. RPP8M-20; 8M-30; 8M-50; 8M-85 teeth number from 22 to 192;
4. RPP14M-40; 14M-55; 14M-85; 14M-115; 14M-170; teeth number from 28-216;
5. Taper Bore RPP5M-15; 8M-20; 8M-30; 8M-50; 8M-85; 14M-40; 14M-55; 14M-85;
14M-115; 14M-170 /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | ISO |
---|---|
Pulley Sizes: | Timing |
Manufacturing Process: | Sawing |
Material: | Steel, Aluminum |
Surface Treatment: | Zinc Coating, Nickel Plating, Black Oxide |
Aluminum: | White Anodized |
Samples: |
US$ 3/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
How do timing pulleys contribute to efficient power distribution?
Timing pulleys play a crucial role in ensuring efficient power distribution in various mechanical systems. Here’s how timing pulleys contribute to efficient power distribution:
1. Precise Timing and Synchronization:
Timing pulleys, in conjunction with timing belts or chains, synchronize the rotation of different components within a system. By maintaining precise timing between the input and output shafts, timing pulleys ensure that power is distributed accurately and efficiently. This synchronization prevents power loss due to misalignment or timing discrepancies.
2. Positive Drive System:
Timing pulleys create a positive drive system when paired with timing belts or chains. The teeth on the pulleys interlock with the teeth on the belt or chain, creating a firm grip that eliminates slippage. This positive drive ensures that power is efficiently transmitted from the driving pulley to the driven pulley without any energy loss.
3. Load Distribution:
Timing pulleys help distribute the load evenly across the system by transmitting power from the driving pulley to the driven pulley. The pulley’s design and tooth profile enable the load to be distributed over a larger contact area, reducing stress concentration on individual components. This even load distribution enhances the overall efficiency of power transmission.
4. Reduced Friction and Wear:
Timing pulleys, particularly those made of materials with low friction coefficients, minimize friction and wear during power transmission. The smooth engagement between the pulley teeth and the belt or chain reduces energy losses caused by friction. Additionally, materials with excellent wear resistance properties extend the lifespan of the pulleys, ensuring long-term efficiency.
5. Tension Control:
Timing pulleys, in combination with tensioner and idler pulleys, help maintain the appropriate tension in the timing belt or chain. Proper tension control ensures that the belt or chain remains securely engaged with the pulleys, preventing power loss due to slippage. By maintaining optimal tension, timing pulleys contribute to efficient power distribution throughout the system.
6. System Optimization:
Timing pulleys allow for system optimization by providing flexibility in gear ratios and power transmission configurations. By selecting pulleys with different diameters or tooth profiles, engineers can adjust the speed and torque distribution within the system. This optimization ensures that power is distributed efficiently, matching the requirements of the specific application.
Overall, timing pulleys ensure efficient power distribution by providing precise timing, creating a positive drive system, evenly distributing loads, reducing friction and wear, controlling tension, and enabling system optimization. These factors contribute to the overall efficiency, reliability, and performance of mechanical systems where timing pulleys are utilized.
What safety considerations should be kept in mind when working with timing pulleys?
Working with timing pulleys requires careful attention to safety to prevent accidents and injuries. Here are some essential safety considerations to keep in mind:
1. Proper Training:
Ensure that individuals working with timing pulleys have received proper training on their safe handling and operation. Training should cover topics such as correct installation procedures, maintenance guidelines, and understanding the risks associated with timing pulley systems.
2. Personal Protective Equipment (PPE):
Wear appropriate personal protective equipment, including safety glasses, gloves, and any other required protective gear when working with timing pulleys. PPE helps protect against potential hazards such as flying debris, sharp edges, or accidental contact with moving parts.
3. Lockout/Tagout Procedures:
Follow established lockout/tagout procedures when performing maintenance or repair tasks on machinery equipped with timing pulleys. Lockout/tagout procedures involve isolating the power source, de-energizing the system, and securing it with a lock or tag to prevent unexpected startup or energization.
4. Machine Guarding:
Ensure that timing pulleys are properly guarded to prevent accidental contact. Install appropriate machine guards, barriers, or enclosures to prevent fingers, clothing, or other objects from coming into contact with the moving pulleys or belts.
5. Regular Inspection and Maintenance:
Regularly inspect timing pulleys for signs of wear, damage, or misalignment. Replace any worn or damaged components promptly to maintain safe operation. Follow the manufacturer’s recommended maintenance schedule and procedures.
6. Avoid Loose Clothing and Jewelry:
Avoid wearing loose clothing, jewelry, or any other items that could get caught in the timing pulleys or associated machinery. Loose clothing or accessories can pose a significant risk of entanglement or injury.
7. Proper Lifting and Handling:
When handling timing pulleys or related equipment, use proper lifting techniques and equipment to prevent strain or injuries. Seek assistance when dealing with heavy or bulky pulleys.
8. Risk Assessment:
Conduct a thorough risk assessment of the machinery and work environment to identify any additional safety measures that may be required. Consider factors such as noise levels, ventilation, and ergonomics to ensure a safe working environment.
9. Emergency Stop and Shutdown:
Ensure that machinery equipped with timing pulleys has accessible emergency stop buttons or switches. Familiarize yourself with the location and operation of these emergency stop devices and know how to shut down the machinery quickly in case of an emergency.
10. Follow Manufacturer’s Guidelines:
Adhere to the manufacturer’s guidelines, instructions, and warnings specific to the timing pulleys and associated machinery. Manufacturers provide valuable information regarding safe operation, maintenance procedures, and recommended safety precautions.
By following these safety considerations, individuals can minimize the risks associated with working with timing pulleys and promote a safe working environment.
What is a timing pulley, and how is it used in mechanical systems?
A timing pulley, also known as a synchronous pulley, is a type of pulley specifically designed to work with toothed belts or timing belts. It features grooves or teeth on its circumferential surface that mesh with corresponding teeth on the belt. Timing pulleys are used in mechanical systems that require precise and synchronized power transmission, where accurate timing and positioning are crucial. Here’s an explanation of the role and usage of timing pulleys in mechanical systems:
1. Power Transmission:
The primary function of a timing pulley is to transmit rotational motion and power between two or more shafts in a mechanical system. The teeth on the pulley engage with the teeth on the timing belt, creating a positive drive system. This positive engagement ensures that the pulley and the belt move together without slipping, providing accurate timing and power transfer.
2. Synchronization:
Timing pulleys are used to synchronize the rotation of different components in a mechanical system. By using matching timing belts and pulleys, the rotational motion of the driving pulley is transferred precisely to the driven pulleys. This synchronization is critical in applications that require accurate timing, such as in engines, printers, CNC machines, and robotics.
3. Speed and Torque Control:
Timing pulleys allow for control over the speed and torque in mechanical systems. By varying the diameter or the number of teeth on the pulleys, different speed ratios can be achieved between the driving and driven shafts. This feature enables the adjustment of rotational speed and torque according to the specific requirements of the application.
4. Positioning and Indexing:
Timing pulleys are often used for precise positioning and indexing of components in mechanical systems. The teeth on the pulley and the timing belt ensure accurate movement and positioning of parts, allowing for repeatable and controlled motion. This makes timing pulleys suitable for applications such as automated assembly lines, 3D printers, and precision motion control systems.
5. Low Maintenance:
Timing pulleys and belts require minimal maintenance due to their design. The toothed profile prevents slippage and eliminates the need for constant tension adjustments. Additionally, they operate with minimal noise and vibration, reducing the wear and tear on the system and increasing its overall reliability.
6. Variations and Configurations:
Timing pulleys are available in various sizes, materials, and configurations to suit different applications. They can be made from materials such as aluminum, steel, or plastic, depending on the requirements of the system. Furthermore, timing pulleys can have different tooth profiles, pitch sizes, and numbers of teeth, allowing for customization based on the specific power transmission needs.
In summary, timing pulleys are specialized pulleys used in mechanical systems to provide precise and synchronized power transmission, accurate timing and positioning, speed and torque control, and low-maintenance operation. Their use is prevalent in applications that require reliable and controlled motion, such as engines, robotics, CNC machines, and automated systems.
editor by CX
2024-03-29