China Good quality Steel Timing Pulley supplier

Product Description

                    

Product Description:
 Transmission component timing belt pulley 

                                 

More Specs of the bracket      :

No.

Parameters

Details

1

Product name S8M Standard timing belt pulley (Pitch 8mm)

2

Material

POM,Plastic,Nylon,Aluminum,Carbon Steel,Stainless steel

3

Teeth type

Trapezoidal tooth,Circular arc tooth

4

Trapezoidal tooth

MXL, XL, L, H, XH, XXH; T5, T10, AT5 etc.

5

Circular arc tooth

2M, 3M, 5M, 8M, 14M; S2M, S5M, S8M etc.

6

Surface treatment

Anodic Oxidation,Black Oxide

7 Application 3D printer, Automation equipment, Power transmission,Embroidery machine etc.
8 MOQ 5pcs(trial order’s quantity is negotiable)

9

Payment

T/T,Western Union,Paypal..

10

Lead time

5-7 days after confirmed the payment(Upto order quantity)

11

Shipping

DHL,Fedex,TNT,EMS,UPS…

12

Sample offer Free sample available
13 OEM & ODM Welcome
14 Other products Timing belt, sprocket, roller chain, gear rack, pinion, rail etc.

 

 

 

Merid Workshop and team:

Our Service:
Stamping
Welding
Machining
Milling
Bending
Finishing

Assembly 

Material :
Carbon steel 
Aluminum
Iron
Stainless steel 

Our parts fields :
Industry&Equipment components 
Construction&Decoration
Agriculture&Farming 
Auto
Electronics&Telecome
Household&Appliance
Sports accessories 

We are good and experience at :
Fence
Bracket
Base
Post 
construction hardware 
Spare parts 
U-bolt 
Handrails 
Metal furniture and containers 
Metal guards 
Custom metal worl 
General metal fabrication 

Merid Ceritified 

Products Photo Gallery  :

Our stamping component fields covers:
*Automotive stamping parts
*Out sports stamping parts
*Agricultural stamping parts
*Stock farming stamping  parts
*Architectural stamping parts
*Industrial stamping parts

FAQ:
1.What are our advantages over others?
a). Stamping, Machining, Welding and Surface treatment equipment are equipped for providing you our best service and solutions.
b). 27 years experience.
c). On-time delivery.
e). Strict Quality Control System: 100% inspection before the shipment..
2.What are the production capacity of your company?
a). In Merid, fabrication works include precision stamping, deep drawing, fine blanking, cnc punching, cnc bending, laser cutting, flame cutting,
cnc milling, cnc turning, tube bending, aluminum extruding, welding etc.
b). Metal materials include stainless steel, iron, carbon steel, spring steel, aluminum, titanium, copper, brass, bronze etc.

3.What equipments do you own?
a). Punch Press: 16T-400T
b). Welding: Carbon dioxide welding, spot welding, tig welding, automated robotic welding.
c). Machining: CNC lathe and machine centers, light machines(drilling, milling and tapping).
d). Surface treatment: Shot blasting facility, Polishing, Deburring.

4.What finishes can you provide?
The finishes which we could provide is powder coating, painting, galvanizing, baked enamel, anodizing finish, and other plating finishes.

5.How can you guarantee the quality?
Quality control department build the control plan before starting the project, the strict inspection will be applied throughout the whole production.

Please click ” SEND ” to inquiry us more details about this bracket :
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: ISO
Pulley Sizes: Type F
Manufacturing Process: Casting
Material: Carbon Steel
Surface Treatment: Oxygenation
Application: Bracket Metalwork
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

timing pulley

What is the role of timing belts in conjunction with timing pulleys?

Timing belts play a crucial role when used in conjunction with timing pulleys in various mechanical systems. Here’s an overview of the role of timing belts:

1. Power Transmission:

The primary role of a timing belt is to transmit power from the driving pulley to the driven pulley. It acts as a flexible, durable, and high-strength link between the two pulleys. As the driving pulley rotates, the teeth on the timing belt engage with the teeth on the timing pulley, enabling the transfer of rotational motion and power.

2. Synchronization:

Timing belts ensure precise synchronization between the driving and driven pulleys. The teeth on the timing belt match the tooth profile of the timing pulley, creating a positive drive system. This synchronization ensures that the rotation of the driven pulley matches the rotation of the driving pulley, maintaining precise timing and coordination between different components in the system.

3. Load Distribution:

Timing belts help distribute the load evenly across the system. The teeth on the timing belt engage with the tooth profile of the timing pulley, allowing for the efficient transfer of torque and power. This even load distribution reduces stress concentration on individual components, promoting longevity and reliability.

4. Shock Absorption:

Timing belts have inherent flexibility, which allows them to absorb shocks and vibrations within the system. This absorption capability helps protect the components from sudden jolts and impacts, ensuring smooth and reliable power transmission. The flexibility of the timing belt also contributes to noise reduction in the system.

5. Low Maintenance and Lubrication-Free Operation:

Timing belts offer the advantage of maintenance-free operation. Unlike some other power transmission systems, timing belts do not require lubrication, resulting in cleaner and more environmentally friendly operation. The absence of lubrication also reduces the risk of contamination in sensitive applications such as food processing or cleanroom environments.

6. Wide Range of Applications:

Timing belts find applications in various industries and systems, including automotive engines, industrial machinery, robotics, printing presses, and more. They are suitable for transmitting power over long distances, operate at high speeds, and can accommodate different torque requirements.

7. Material Selection:

Timing belts are manufactured using different materials such as rubber, polyurethane, or reinforced synthetic materials. The choice of material depends on the specific application requirements, including factors such as load capacity, temperature resistance, chemical resistance, and environmental conditions.

In summary, timing belts, when used in conjunction with timing pulleys, facilitate efficient power transmission, ensure synchronization, distribute loads evenly, absorb shocks, require low maintenance, and find wide-ranging applications. The combination of timing belts and timing pulleys provides reliable and precise power distribution in various mechanical systems.

timing pulley

How are timing pulleys integrated into CNC machines for positioning?

Timing pulleys play a crucial role in CNC (Computer Numerical Control) machines for precise positioning of the tool or workpiece. Here’s an explanation of how timing pulleys are integrated into CNC machines for positioning:

1. Drive System:

In a CNC machine, timing pulleys are often used as part of the drive system. The driving pulley is connected to a motor, typically a stepper motor or a servo motor, which provides rotational power. The driven pulley is connected to the axis or axes responsible for moving the tool or workpiece. The timing belt or chain, meshing with the pulleys, transfers the rotational motion from the motor to the driven pulley, enabling precise positioning.

2. Synchronization:

The primary purpose of timing pulleys in CNC machines is to achieve synchronization between the motor and the axis movement. By using toothed timing belts or chains, the rotational motion from the motor is precisely transferred to the driven pulley. The teeth on the timing belt or chain mesh with the teeth on the pulley, creating a positive engagement that ensures accurate and synchronized movement.

3. Pulley Ratios:

To achieve the desired positioning accuracy, CNC machines often utilize different pulley ratios. By varying the diameter or the number of teeth on the pulleys, the speed and torque of the driven axis can be adjusted. This allows for fine-tuning the positioning performance based on the specific requirements of the CNC application.

4. Multiple Axes:

CNC machines commonly have multiple axes, such as X, Y, and Z axes for three-dimensional movement. Each axis is equipped with its respective timing pulley system. The pulleys and timing belts or chains for each axis are carefully calibrated and synchronized to ensure coordinated movement and precise positioning in all directions.

5. Tensioning and Alignment:

Proper tensioning and alignment of the timing belts or chains are essential for accurate positioning in CNC machines. Adequate tension ensures that the belts or chains maintain the necessary grip and engagement with the pulleys, preventing slippage or backlash. Regular inspection and adjustment of tension and alignment are necessary to maintain optimal positioning performance.

6. Encoder Feedback:

To enhance positioning accuracy, CNC machines often incorporate encoder feedback systems. Encoders provide precise position feedback to the control system, allowing for closed-loop control. The encoder is usually connected to the driven pulley, enabling real-time monitoring and adjustment of the position to ensure accurate positioning during operation.

7. Control System Integration:

The timing pulley systems in CNC machines are integrated into the overall control system. The control software sends commands to the motor, dictating the desired positioning and movement. The control system interprets the input signals, calculates the appropriate motor rotations, and adjusts the timing pulley system to achieve the specified positioning accuracy.

In summary, timing pulleys are integrated into CNC machines for precise positioning by serving as part of the drive system, enabling synchronization between the motor and the driven axis, using pulley ratios to control speed and torque, accommodating multiple axes, ensuring proper tensioning and alignment, incorporating encoder feedback for enhanced accuracy, and integrating with the control system. These mechanisms and considerations work together to achieve the high precision and accuracy required in CNC machining operations.

timing pulley

What is a timing pulley, and how is it used in mechanical systems?

A timing pulley, also known as a synchronous pulley, is a type of pulley specifically designed to work with toothed belts or timing belts. It features grooves or teeth on its circumferential surface that mesh with corresponding teeth on the belt. Timing pulleys are used in mechanical systems that require precise and synchronized power transmission, where accurate timing and positioning are crucial. Here’s an explanation of the role and usage of timing pulleys in mechanical systems:

1. Power Transmission:

The primary function of a timing pulley is to transmit rotational motion and power between two or more shafts in a mechanical system. The teeth on the pulley engage with the teeth on the timing belt, creating a positive drive system. This positive engagement ensures that the pulley and the belt move together without slipping, providing accurate timing and power transfer.

2. Synchronization:

Timing pulleys are used to synchronize the rotation of different components in a mechanical system. By using matching timing belts and pulleys, the rotational motion of the driving pulley is transferred precisely to the driven pulleys. This synchronization is critical in applications that require accurate timing, such as in engines, printers, CNC machines, and robotics.

3. Speed and Torque Control:

Timing pulleys allow for control over the speed and torque in mechanical systems. By varying the diameter or the number of teeth on the pulleys, different speed ratios can be achieved between the driving and driven shafts. This feature enables the adjustment of rotational speed and torque according to the specific requirements of the application.

4. Positioning and Indexing:

Timing pulleys are often used for precise positioning and indexing of components in mechanical systems. The teeth on the pulley and the timing belt ensure accurate movement and positioning of parts, allowing for repeatable and controlled motion. This makes timing pulleys suitable for applications such as automated assembly lines, 3D printers, and precision motion control systems.

5. Low Maintenance:

Timing pulleys and belts require minimal maintenance due to their design. The toothed profile prevents slippage and eliminates the need for constant tension adjustments. Additionally, they operate with minimal noise and vibration, reducing the wear and tear on the system and increasing its overall reliability.

6. Variations and Configurations:

Timing pulleys are available in various sizes, materials, and configurations to suit different applications. They can be made from materials such as aluminum, steel, or plastic, depending on the requirements of the system. Furthermore, timing pulleys can have different tooth profiles, pitch sizes, and numbers of teeth, allowing for customization based on the specific power transmission needs.

In summary, timing pulleys are specialized pulleys used in mechanical systems to provide precise and synchronized power transmission, accurate timing and positioning, speed and torque control, and low-maintenance operation. Their use is prevalent in applications that require reliable and controlled motion, such as engines, robotics, CNC machines, and automated systems.

China Good quality Steel Timing Pulley   supplier China Good quality Steel Timing Pulley   supplier
editor by CX

2024-03-28