Product Description
Market | EU,North America,Mid-East,South America,Asia | Manufacturing | OEM & ODM |
Packing | Neutral or Customize | Application | Auto Engine |
Delivery | 7-20 days | Port | HangZhou,ZheJiang |
Warranty | 30,000KM 50,000KM or 80,000KM | Certificate | IATF 16949:2016 |
About us
HangZhou Lanhai Quantum Precision Bearing Manufacturing Co., Ltd was found in 2017, located in HangZhou, HangZhou, China, specialized in manufacturing automotive bearing and non-standard bearing customization. The company formerly known as HangZhou Xinzhe Bearing Manufacturing Co., Ltd., mainly produces industrial motor bearings with 17 years of experience. We have a strong technical development team and first-class testing equipments. The research on vibration and noise, sealing, lubrication, and service life of automotive bearings is at the leading level in the industry, and a large number of application results have been achieved in key bearing processes, key accessories and technology research and development, a number of bearing manufacturing core technologies have been mastered. High standard ball bearing is our main products, lines including tensioner bearing, alternator bearing, AC compressor bearing and agriculture bearing. Creating value for customers is the goal we have been pursuing. We firmly believe that only a CHINAMFG situation is the development direction of the company. We will, as always, produce high-quality products in strict accordance with customer requirements, in order to return customers′ support and trust!
Why we are better?
1.Lanhai specialized in manufacturing bearings for automotive tensioner,alternator,AC compressor and special size items,supplying to 65% tensioner factories in China.Why they trust us?just because of reliable quality and service.
2.Customers from 12 countries made good profits by selling our products.First class quality and service with second class price is our promise.
3.The lifetime of grease reaches 1000h in durability test.NBR sealing ring continuously working more than 100h understand 140ºC.ACM sealing material passed 500h durability test.
4.Standard items 100% automatic production, special items automation and semi-automation rate reached more than 90%.
5.High efficiency on new item developing and short production delivery time.
After-sales Service: | Professional Technician and Manufacturing Team |
---|---|
Warranty: | 50, 000-80, 000 Km |
Marketing: | Aftermarket |
Standard: | Genuine Quality |
Transport Package: | Plastic Bag + Individual Box |
Trademark: | OEM/ODM |
Customization: |
Available
| Customized Request |
---|
What is the role of timing belts in conjunction with timing pulleys?
Timing belts play a crucial role when used in conjunction with timing pulleys in various mechanical systems. Here’s an overview of the role of timing belts:
1. Power Transmission:
The primary role of a timing belt is to transmit power from the driving pulley to the driven pulley. It acts as a flexible, durable, and high-strength link between the two pulleys. As the driving pulley rotates, the teeth on the timing belt engage with the teeth on the timing pulley, enabling the transfer of rotational motion and power.
2. Synchronization:
Timing belts ensure precise synchronization between the driving and driven pulleys. The teeth on the timing belt match the tooth profile of the timing pulley, creating a positive drive system. This synchronization ensures that the rotation of the driven pulley matches the rotation of the driving pulley, maintaining precise timing and coordination between different components in the system.
3. Load Distribution:
Timing belts help distribute the load evenly across the system. The teeth on the timing belt engage with the tooth profile of the timing pulley, allowing for the efficient transfer of torque and power. This even load distribution reduces stress concentration on individual components, promoting longevity and reliability.
4. Shock Absorption:
Timing belts have inherent flexibility, which allows them to absorb shocks and vibrations within the system. This absorption capability helps protect the components from sudden jolts and impacts, ensuring smooth and reliable power transmission. The flexibility of the timing belt also contributes to noise reduction in the system.
5. Low Maintenance and Lubrication-Free Operation:
Timing belts offer the advantage of maintenance-free operation. Unlike some other power transmission systems, timing belts do not require lubrication, resulting in cleaner and more environmentally friendly operation. The absence of lubrication also reduces the risk of contamination in sensitive applications such as food processing or cleanroom environments.
6. Wide Range of Applications:
Timing belts find applications in various industries and systems, including automotive engines, industrial machinery, robotics, printing presses, and more. They are suitable for transmitting power over long distances, operate at high speeds, and can accommodate different torque requirements.
7. Material Selection:
Timing belts are manufactured using different materials such as rubber, polyurethane, or reinforced synthetic materials. The choice of material depends on the specific application requirements, including factors such as load capacity, temperature resistance, chemical resistance, and environmental conditions.
In summary, timing belts, when used in conjunction with timing pulleys, facilitate efficient power transmission, ensure synchronization, distribute loads evenly, absorb shocks, require low maintenance, and find wide-ranging applications. The combination of timing belts and timing pulleys provides reliable and precise power distribution in various mechanical systems.
What are the benefits of using toothed timing belts with pulleys?
Using toothed timing belts in conjunction with pulleys offers several benefits in mechanical systems. Here are some advantages:
1. Precise Power Transmission:
Toothed timing belts provide accurate power transmission between the driving and driven pulleys. The teeth on the belt mesh with the grooves or teeth on the pulley, creating a positive drive system. This positive engagement ensures that power is transferred efficiently and without slippage, maintaining precise motion and torque transmission.
2. Synchronization:
The teeth on the timing belt and the corresponding teeth on the pulley enable synchronization of multiple components in a system. By precisely matching the tooth profiles, timing belts ensure that the rotation of the driving pulley is transferred to the driven pulley with precise timing. This synchronization is crucial in applications where coordinated motion is necessary, such as in engines, conveyors, and robotic systems.
3. High Efficiency:
Toothed timing belts and pulleys have a high transmission efficiency. The positive engagement between the teeth on the belt and the pulley minimizes energy losses that can occur in other power transmission systems, such as friction-based drives. This high efficiency results in less power wastage and improved overall system performance.
4. Quiet and Smooth Operation:
Toothed timing belts operate with reduced noise levels compared to other power transmission systems. The meshing of the teeth creates a smooth and quiet operation, which is beneficial in applications where noise reduction is desired, such as in office equipment or precision machinery.
5. Low Maintenance:
Toothed timing belts require minimal maintenance compared to alternative power transmission systems. They do not need lubrication, which eliminates the need for regular greasing or oiling. Additionally, toothed timing belts are resistant to contamination and do not suffer from issues like stretching or retensioning, resulting in reduced maintenance tasks and costs.
6. Wide Range of Applications:
Toothed timing belts with pulleys find applications in various industries and systems. They are used in automotive engines, industrial machinery, printing presses, medical devices, and many other applications. Toothed timing belts can handle a wide range of loads and speeds, making them versatile for different power transmission requirements.
7. Design Flexibility:
Timing belts are available in various sizes, materials, and tooth profiles, offering design flexibility. This allows engineers and designers to select the most appropriate belt and pulley combination for their specific application requirements, considering factors such as load capacity, speed, environmental conditions, and space constraints.
In summary, using toothed timing belts with pulleys provides precise power transmission, synchronization, high efficiency, quiet operation, low maintenance, versatility, and design flexibility. These benefits make toothed timing belts a popular choice in numerous mechanical systems.
What are the key components of a timing pulley system?
A timing pulley system consists of several key components that work together to provide precise power transmission and motion control. These components include:
1. Timing Pulley:
The timing pulley is the central component of the system. It is a toothed pulley with grooves or teeth on its circumferential surface that mesh with the teeth on the timing belt. The timing pulley transfers rotational motion and power between the driving and driven shafts, ensuring accurate timing and synchronization.
2. Timing Belt:
The timing belt is a toothed belt that runs around the timing pulleys. It has teeth that mesh with the teeth on the timing pulley, creating a positive drive system. The timing belt transmits power from the driving pulley to the driven pulleys while maintaining precise timing and synchronization. Timing belts are typically made of rubber or polymer materials with reinforcing cords for strength.
3. Tensioner:
A tensioner is used to maintain proper tension in the timing belt. It applies tension to the timing belt to prevent slack or excessive tightness, ensuring optimal power transmission and preventing belt skipping or jumping teeth. Tensioners can be spring-loaded or adjustable, depending on the specific system requirements.
4. Idler Pulley:
An idler pulley is an additional pulley used to guide the timing belt and change its direction. It helps to maintain the proper tension and alignment of the timing belt as it wraps around the pulleys. Idler pulleys are typically used in systems with complex routing or when additional support is needed to prevent belt vibration or noise.
5. Shaft or Axle:
The shaft or axle serves as the support for the timing pulleys and allows them to rotate. It is usually connected to a driving source, such as a motor or engine, to provide rotational motion. The shaft or axle needs to be properly aligned and secured to ensure smooth and accurate power transmission.
6. Mounting Hardware:
Mounting hardware includes bolts, screws, or fasteners used to secure the timing pulleys, tensioner, idler pulleys, and other components to their respective locations. The mounting hardware ensures proper alignment and stability of the timing pulley system.
7. Covers and Guards:
In some applications, timing pulley systems may be enclosed with covers or guards for protection. These covers prevent dust, debris, or contaminants from entering the system, which could affect the performance and lifespan of the timing belt and pulleys. Covers and guards also provide a safety barrier, preventing accidental contact with moving parts.
Each of these components plays a crucial role in a timing pulley system, working together to achieve accurate power transmission, precise timing, and synchronization. Proper installation, alignment, and maintenance of these components are essential for the reliable and efficient operation of the timing pulley system.
editor by CX
2023-10-06