Product Description
FIAT Timing belt tensioner pulley 96374891 945711649 945711469 945711679
OEM:96374891 945711649 945711469 945711679
Ref no.: APV2167 FEBI 19214 CHINAMFG T365718 CHINAMFG 532571610 CHINAMFG VKM33017
size:37*27
Application: FIAT
Product Parameters
OEM NO. |
96374891 945711649 |
Application | FIAT |
Place of CHINAMFG |
ZHangZhoug, China |
Material |
Aluminium |
Product Name |
Belt Tensioner |
Reference NO. |
|
Packing |
Neutral Packing |
SHIPPING TERM |
Sea/Air |
Quality |
100%tested |
Size |
same as OEM |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 1 Year |
---|---|
Warranty: | 1 Year |
Certification: | CCC, ISO9001, TS16949 |
Samples: |
US$ 30/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
How do timing pulley systems ensure synchronized motion?
Timing pulley systems play a crucial role in ensuring synchronized motion in various mechanical systems. Here’s how timing pulley systems achieve synchronized motion:
1. Toothed Design:
Timing pulleys have teeth or grooves on their periphery that mesh with the teeth on the timing belt or chain. The toothed design creates positive engagement between the pulley and the belt or chain, preventing slippage and maintaining precise synchronization.
2. Timing Belts or Chains:
The timing pulley system works in conjunction with a timing belt or chain. The teeth on the belt or chain interlock with the teeth on the pulley, ensuring that the rotational motion is transferred accurately from the driving pulley to the driven pulley. The precise engagement of the teeth allows for synchronized motion between the pulleys.
3. Constant Pitch:
The teeth on the timing belt or chain and the corresponding teeth on the timing pulleys have a consistent pitch. The pitch refers to the distance between the teeth, and it remains constant throughout the length of the belt or chain. This constant pitch ensures that the teeth on the belt or chain engage with the pulley teeth at the same rate, maintaining synchronized motion.
4. Precise Manufacturing Tolerances:
Timing pulley systems are manufactured with tight tolerances to ensure accurate tooth profiles and consistent dimensions. The teeth on the pulleys and the teeth on the belt or chain are designed to match precisely, allowing for seamless interaction and precise synchronization. High manufacturing tolerances contribute to the reliability and efficiency of the system.
5. Tension Control:
Proper tension control is vital for achieving synchronized motion in a timing pulley system. The tension in the timing belt or chain needs to be adjusted correctly to ensure optimal engagement with the pulleys. Tensioners and idler pulleys are often used to maintain the appropriate tension, ensuring that the belt or chain remains securely engaged with the pulleys.
6. Suitable Pulley and Belt/Chain Selection:
Choosing the appropriate combination of timing pulleys and timing belts or chains is crucial for achieving synchronized motion. Factors such as pulley diameter, number of teeth, belt or chain pitch, and material selection need to be considered to match the specific requirements of the application. Proper selection ensures that the pulley system operates with accurate timing and synchronized motion.
7. Regular Maintenance and Inspection:
To ensure continued synchronized motion, regular maintenance and inspection of the timing pulley system are necessary. This includes checking for wear, proper tension, and alignment, and replacing any worn-out components. Routine maintenance helps identify and address potential issues that could affect the synchronized motion of the system.
By incorporating toothed design, timing belts or chains, constant pitch, precise manufacturing tolerances, tension control, suitable pulley and belt/chain selection, and regular maintenance, timing pulley systems ensure synchronized motion in mechanical systems. This synchronization is essential for accurate timing, coordination, and efficient operation of various applications.
How do timing pulleys impact the performance of 3D printers?
Timing pulleys play a significant role in determining the performance and accuracy of 3D printers. Here’s an explanation of how timing pulleys impact the performance of 3D printers:
1. Motion Control:
Timing pulleys, in conjunction with belts or chains, are used to control the movement of the print head and build platform in 3D printers. The motor drives the driving pulley, which is connected to the print head or build platform through a timing belt or chain. The driven pulley on the print head or build platform receives the rotational motion from the driving pulley, resulting in precise and synchronized movement. The accuracy and quality of the printed object depend on the precise control and synchronization facilitated by the timing pulleys.
2. Positioning Accuracy:
Timing pulleys contribute to the positioning accuracy of 3D printers. The teeth on the timing belt or chain mesh with the teeth on the pulleys, creating positive engagement. This ensures that the print head or build platform moves precisely according to the instructions from the control system. The accuracy of the timing pulley system directly affects the dimensional accuracy and surface finish of the printed object.
3. Speed and Acceleration:
Timing pulleys allow for control of the speed and acceleration of the print head and build platform in 3D printers. By varying the diameter or the number of teeth on the pulleys, different gear ratios can be achieved. This enables printers to control the speed and acceleration of the print head or build platform, affecting printing time, print quality, and the ability to handle intricate details and complex geometries.
4. Print Resolution:
The resolution of a 3D printer refers to the smallest feature size that can be accurately reproduced. Timing pulleys play a role in determining the achievable print resolution. The finer the pitch and the more teeth per unit length on the timing belt or chain, the higher the resolution that can be achieved. Timing pulleys with smaller teeth allow for finer positioning and more precise movement, enabling the printer to produce objects with intricate details and smooth surfaces.
5. Noise and Vibration:
Properly designed and maintained timing pulley systems contribute to reducing noise and vibration in 3D printers. Well-aligned and tensioned timing belts or chains, along with accurately machined pulleys, minimize backlash and ensure smooth and quiet operation. This is particularly important during rapid movements and changes in direction, as excessive noise and vibration can affect print quality and overall printer performance.
6. Maintenance and Durability:
The durability and maintenance requirements of the timing pulley system impact the overall performance of 3D printers. High-quality timing pulleys and belts or chains are essential to ensure longevity and reliable operation. Regular inspection, tensioning, and replacement of worn or damaged components are necessary to maintain optimal performance and prevent print quality issues caused by a degraded timing pulley system.
7. Extruder and Filament Control:
In addition to controlling the movement of the print head and build platform, timing pulleys may also be used in the extruder assembly of 3D printers. Timing pulleys help drive the filament feeding mechanism, ensuring consistent and controlled extrusion of the filament during the printing process. The accurate and synchronized movement facilitated by the timing pulleys contributes to maintaining filament tension and preventing issues such as under-extrusion or filament jams.
By understanding the impact of timing pulleys on 3D printer performance, manufacturers and users can optimize the design, calibration, and maintenance of the timing pulley systems to achieve accurate, reliable, and high-quality 3D prints.
How are timing pulleys utilized in automotive engines?
Timing pulleys play a crucial role in automotive engines, contributing to the precise operation and synchronization of various engine components. Here’s how timing pulleys are utilized in automotive engines:
1. Camshaft Synchronization:
Timing pulleys are commonly employed to synchronize the rotation of the camshaft with the crankshaft in an internal combustion engine. The camshaft controls the opening and closing of the engine’s intake and exhaust valves, while the crankshaft converts the reciprocating motion of the pistons into rotational motion. The timing pulley on the camshaft is connected to the crankshaft via a timing belt or chain, ensuring precise timing and coordination between these two essential engine components.
2. Valve Timing:
Timing pulleys, in conjunction with the camshaft, determine the valve timing in an engine. The precise opening and closing of the intake and exhaust valves at specific moments during the engine’s four-stroke cycle (intake, compression, power, and exhaust) are critical for optimal engine performance. The timing pulleys ensure accurate valve timing, allowing for efficient fuel-air intake, combustion, and exhaust processes.
3. Belt or Chain Drive:
In automotive engines, timing pulleys are used in conjunction with a timing belt or timing chain to transmit power between the crankshaft and the camshaft. The timing belt or chain connects the timing pulleys on these two shafts, allowing for synchronized rotation. The teeth on the timing pulleys engage with the teeth on the timing belt or chain, creating a positive drive system that ensures accurate power transmission without slippage.
4. Tensioner and Idler Pulleys:
Timing pulleys are also utilized in the tensioning system of the timing belt or chain. Tensioner pulleys and idler pulleys, equipped with timing pulleys, help maintain proper tension and alignment of the timing belt or chain. These pulleys apply tension to the belt or chain, ensuring it remains securely in place and properly engaged with the timing pulleys on the crankshaft and camshaft.
5. Overhead Cam (OHC) and Dual Overhead Cam (DOHC) Engines:
Timing pulleys are particularly important in overhead cam (OHC) and dual overhead cam (DOHC) engines, where the camshaft(s) is located in the cylinder head above the valves. In these engine designs, timing pulleys help drive the camshaft(s) and synchronize their rotation with the crankshaft, ensuring precise valve operation and optimal engine performance.
6. Variable Valve Timing Mechanisms:
Timing pulleys are integral to variable valve timing (VVT) mechanisms used in modern automotive engines. VVT systems adjust the timing of the intake and exhaust valves to optimize engine performance, power, and fuel efficiency under different operating conditions. Timing pulleys, combined with hydraulic actuators or electronically controlled mechanisms, enable the adjustment of the camshaft position and timing, allowing for variable valve timing.
7. Engine Performance and Efficiency:
By accurately timing the valve operation and synchronization between the camshaft and crankshaft, timing pulleys contribute to overall engine performance and efficiency. Precise valve timing ensures efficient combustion, improved power delivery, reduced emissions, and better fuel economy. Proper operation of the timing pulleys is essential for the reliable and optimal functioning of automotive engines.
In summary, timing pulleys are essential components in automotive engines, facilitating the synchronization of the camshaft and crankshaft, determining valve timing, enabling power transmission through timing belts or chains, assisting in tensioning systems, and supporting variable valve timing mechanisms. Their precise operation ensures efficient engine performance, power delivery, and fuel economy in various types of automotive engines.
editor by CX
2024-04-04