Product Description
OEM or Standard Timing Motor Belt Pulley Tensioner Pulley/Belt Sheave Pulle
V blet Pulley and V pulley
We are professional manufacturer for lots of pulleys, such as V belt pulley, timing belt pulley, 3V, 5V, 8V pulley and so on. Pilot bore, taper bore Pulleys(SPA, SPB, SPC AND SPZ), adjustable pulleys, multi wedge pulleys.
1) European standards:
- a) V-belts pulley for taper bushing: SPZ, SPA, SPB, SPC; up to 10 grooves.
- b) Adjustable speed V-belt pulleys and variable speed pulleys
- c) Flat belt pulleys and conveyor belt pulleys.
2) American standards:
- a) Sheave for taper bushing: 3V, 5V, 8V
- b) Sheaves for QD bushings: 3V, 5V, 8V
- c) Sheaves for split taper bushing: 3V, 5V, 8V.
- d) Sheave for 3L, 4L or A, and 5L or B belts: AK, AKH, 2AK, 2AKH, BK, BKH,2BK, 2BKH, 3BK
- e) Adjustable sheave: poly V-pulley, multi-pitch H, L, J, K and M
3) Fetures:
1. Made according to drawings and/or sample,OEM inquiries welcomed, especially for big pulley.
2. Material: 45C, cast iron, ductile iron, GG25, GGG40, nylon, aluminum, etc.
3. Surface treatment: Black oxide, phosphate, painted, Zinc plate or passavited
4. Bore: pilot bore, finish bore, taper bore, bore for QD bushing
5. Inspection:Dynamic balance & Static balance test are available.With standardized desigh and well equipped CNC machining Systems.
6. Our pulleys have high Precision and good interchangeability.
7. Apply to mining machinery,petroleum machinery ETC
OUR SERVICE:
1) Competitive price and good quality
2) Used for transmission systems.
3) Excellent performance, long using life
4) Could be developed according to your drawings or data sheet
5) Pakaging:follow the customers’ requirements or as our usual package
6) Brand name: per every customer’s requirement.
7) Flexible minimum order quantity
8) Sample can be supplied
MAIN PRODUCTS:
1) Timing Belt Pulley (Synchronous Pulley), Timing Bar, Clamping Plate;
2) Forging, Casting, Stampling Part;
3) V Belt Pulley and Taper Lock Bush; Sprocket, Idler and Plate Wheel;Spur Gear, Bevel Gear, Rack;
4) Shaft Locking Device: could be alternative for Ringfeder, Sati, Chiaravalli, Tollok, etc.;
5) Shaft Coupling:including Miniature couplings, Curved tooth coupling, Chain coupling, HRC coupling, Normex coupling, Type coupling, GE Coupling, torque limiter, Universal Joint;
6) Shaft Collars: including Setscrew Type, Single Split and Double Splits;
Company Information
ZheJiang Mighty Machinery Co., Ltd. specializes in manufacturing Mechanical Power Transmission Products.
We Mighty is the division/branch of SCMC Group, which is a wholly state-owned company, established in 1980.
About Mighty:
-3 manufacturing factories, we have 5 technical staff, our FTY have strong capacity for design and process design, and more than
70 workers and double shift eveyday.
-Large quality of various material purchase and stock in warhouse which ensure the low cost for the material and production in
time.
-Strick quality control are apply in the whole prodution. we have incoming inspection,process inspection and final production
inspection which can ensure the perfect of the goods quality.
-14 years of machining experience. Long time cooperate with the Global Buyer, make us easy to understand the csutomer and handle the export.
MIGHTY’s products are mainly exported to Europe, America and the Middle East market. With the top-ranking management, professional technical support and abundant export experience, MIGHTY has established lasting and stable business partnership with many world famous companies and has got good reputation from CHINAMFG customers in international sales.
FAQ
Q: Are you trading company or manufacturer ?
A: We are factory.
Q: How long is your delivery time?
A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to
quantity.
Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample for free charge but do not pay the cost of freight.
Q: What is your terms of payment ?
A: Payment=10000USD, 30% T/T in advance ,balance before shippment
We warmly welcome friends from domestic and abroad come to us for business negotiation and cooperation for mutual benefit. To supply customers excellent quality products with good price and punctual delivery time is our responsibility.
Certification: | ISO |
---|---|
Pulley Sizes: | SPA/Spb/Spc/Spz, 3V/5V/8V, Ta/Tb/Tc, Ak/Bk |
Manufacturing Process: | Casting |
Material: | Iron |
Surface Treatment: | Phosphating |
Application: | Chemical Industry, Motor, and So on |
Samples: |
US$ 0.5/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
What is the role of timing belts in conjunction with timing pulleys?
Timing belts play a crucial role when used in conjunction with timing pulleys in various mechanical systems. Here’s an overview of the role of timing belts:
1. Power Transmission:
The primary role of a timing belt is to transmit power from the driving pulley to the driven pulley. It acts as a flexible, durable, and high-strength link between the two pulleys. As the driving pulley rotates, the teeth on the timing belt engage with the teeth on the timing pulley, enabling the transfer of rotational motion and power.
2. Synchronization:
Timing belts ensure precise synchronization between the driving and driven pulleys. The teeth on the timing belt match the tooth profile of the timing pulley, creating a positive drive system. This synchronization ensures that the rotation of the driven pulley matches the rotation of the driving pulley, maintaining precise timing and coordination between different components in the system.
3. Load Distribution:
Timing belts help distribute the load evenly across the system. The teeth on the timing belt engage with the tooth profile of the timing pulley, allowing for the efficient transfer of torque and power. This even load distribution reduces stress concentration on individual components, promoting longevity and reliability.
4. Shock Absorption:
Timing belts have inherent flexibility, which allows them to absorb shocks and vibrations within the system. This absorption capability helps protect the components from sudden jolts and impacts, ensuring smooth and reliable power transmission. The flexibility of the timing belt also contributes to noise reduction in the system.
5. Low Maintenance and Lubrication-Free Operation:
Timing belts offer the advantage of maintenance-free operation. Unlike some other power transmission systems, timing belts do not require lubrication, resulting in cleaner and more environmentally friendly operation. The absence of lubrication also reduces the risk of contamination in sensitive applications such as food processing or cleanroom environments.
6. Wide Range of Applications:
Timing belts find applications in various industries and systems, including automotive engines, industrial machinery, robotics, printing presses, and more. They are suitable for transmitting power over long distances, operate at high speeds, and can accommodate different torque requirements.
7. Material Selection:
Timing belts are manufactured using different materials such as rubber, polyurethane, or reinforced synthetic materials. The choice of material depends on the specific application requirements, including factors such as load capacity, temperature resistance, chemical resistance, and environmental conditions.
In summary, timing belts, when used in conjunction with timing pulleys, facilitate efficient power transmission, ensure synchronization, distribute loads evenly, absorb shocks, require low maintenance, and find wide-ranging applications. The combination of timing belts and timing pulleys provides reliable and precise power distribution in various mechanical systems.
What are the common applications of timing pulleys in robotics?
Timing pulleys play a vital role in various applications within the field of robotics. Here are some common applications of timing pulleys in robotics:
1. Robotic Arm Movement:
Timing pulleys are often used to control the movement of robotic arms. By connecting the motor to the driving pulley and the arm joint to the driven pulley with a timing belt or chain, the rotational motion of the motor is converted into precise and synchronized movement of the arm. This allows robots to perform tasks that require accurate positioning and controlled motion, such as pick-and-place operations in manufacturing or assembly processes.
2. Joint Actuation:
Robotic joints rely on timing pulleys to provide rotational movement. The driving pulley is connected to the motor, while the driven pulley is linked to the joint axis through a timing belt or chain. This configuration facilitates precise and coordinated movement of the robotic joint, enabling robots to perform tasks that require flexibility and dexterity, such as reaching different positions, manipulating objects, or mimicking human-like motions.
3. Linear Actuators:
Timing pulleys are utilized in linear actuator systems within robotics. By connecting the motor to the driving pulley and a linear mechanism, such as a lead screw or a linear belt, to the driven pulley, linear motion can be achieved. This enables robots to perform linear movements, such as extending or retracting a robotic arm or a gripper, adjusting the height of a platform, or executing precise linear positioning tasks.
4. Conveyor Systems:
Timing pulleys are employed in robotic conveyor systems to control the movement of objects or workpieces. By connecting the motor to the driving pulley and the conveyor belt to the driven pulley, the rotational motion of the motor is transferred to the conveyor belt, enabling the transportation of items. Timing pulleys ensure precise and synchronized movement of the conveyor belt, allowing robots to handle material handling tasks efficiently in industries such as logistics, manufacturing, and packaging.
5. Robot Mobility:
Timing pulleys are utilized in robotic mobility systems, such as wheeled or tracked robots. By connecting the motor to the driving pulley and the wheel or track mechanism to the driven pulley with a timing belt or chain, rotational motion is converted into linear motion, enabling the robot to move. Timing pulleys ensure precise and coordinated movement of the wheels or tracks, allowing robots to navigate and maneuver effectively in various environments.
6. Gripping and Manipulation:
Timing pulleys are employed in robotic gripper systems for precise gripping and manipulation of objects. By connecting the motor to the driving pulley and the gripper mechanism to the driven pulley, the rotational motion is converted into controlled gripping and releasing motions. Timing pulleys enable accurate and synchronized movement of the gripper, allowing robots to handle objects of different shapes, sizes, and weights with precision.
7. Articulated Limbs and Biomechanical Robotics:
Timing pulleys are used in robotics applications that aim to mimic human or animal movements. They are employed in the design of articulated limbs and biomechanical robots to provide precise and coordinated motion similar to natural joints and muscles. The timing pulleys facilitate the controlled movement of the robotic limbs, enabling robots to perform tasks that require lifelike motion, such as prosthetics, exoskeletons, or research in the field of biomechanics.
These are just a few examples of the common applications of timing pulleys in robotics. The precise and synchronized movement enabled by timing pulleys is crucial in achieving accurate and controlled robotic operations in various industries and research fields.
What is a timing pulley, and how is it used in mechanical systems?
A timing pulley, also known as a synchronous pulley, is a type of pulley specifically designed to work with toothed belts or timing belts. It features grooves or teeth on its circumferential surface that mesh with corresponding teeth on the belt. Timing pulleys are used in mechanical systems that require precise and synchronized power transmission, where accurate timing and positioning are crucial. Here’s an explanation of the role and usage of timing pulleys in mechanical systems:
1. Power Transmission:
The primary function of a timing pulley is to transmit rotational motion and power between two or more shafts in a mechanical system. The teeth on the pulley engage with the teeth on the timing belt, creating a positive drive system. This positive engagement ensures that the pulley and the belt move together without slipping, providing accurate timing and power transfer.
2. Synchronization:
Timing pulleys are used to synchronize the rotation of different components in a mechanical system. By using matching timing belts and pulleys, the rotational motion of the driving pulley is transferred precisely to the driven pulleys. This synchronization is critical in applications that require accurate timing, such as in engines, printers, CNC machines, and robotics.
3. Speed and Torque Control:
Timing pulleys allow for control over the speed and torque in mechanical systems. By varying the diameter or the number of teeth on the pulleys, different speed ratios can be achieved between the driving and driven shafts. This feature enables the adjustment of rotational speed and torque according to the specific requirements of the application.
4. Positioning and Indexing:
Timing pulleys are often used for precise positioning and indexing of components in mechanical systems. The teeth on the pulley and the timing belt ensure accurate movement and positioning of parts, allowing for repeatable and controlled motion. This makes timing pulleys suitable for applications such as automated assembly lines, 3D printers, and precision motion control systems.
5. Low Maintenance:
Timing pulleys and belts require minimal maintenance due to their design. The toothed profile prevents slippage and eliminates the need for constant tension adjustments. Additionally, they operate with minimal noise and vibration, reducing the wear and tear on the system and increasing its overall reliability.
6. Variations and Configurations:
Timing pulleys are available in various sizes, materials, and configurations to suit different applications. They can be made from materials such as aluminum, steel, or plastic, depending on the requirements of the system. Furthermore, timing pulleys can have different tooth profiles, pitch sizes, and numbers of teeth, allowing for customization based on the specific power transmission needs.
In summary, timing pulleys are specialized pulleys used in mechanical systems to provide precise and synchronized power transmission, accurate timing and positioning, speed and torque control, and low-maintenance operation. Their use is prevalent in applications that require reliable and controlled motion, such as engines, robotics, CNC machines, and automated systems.
editor by CX
2023-11-20