Product Description
Name: | DACIA timing belt kit tensioner pulley | ||
Type: | Timing belt repair kit | ||
Position: | Tension Roller | ||
Weight: | 0.8 KG/Set | ||
Material: | Chrome steel/GCR-15 | ||
Technology: | Hot forging | ||
CAGE: | PA66R | DACIA : | RENAULT : R |
DACIA : R | DACIA : | RENAULT : | |
DACIA : T | DACIA : | RENAULT : | |
DACIA : R | DACIA : | RENAULT : | |
DACIA : 13 0C 121 31R | DACIA : | RENAULT : 7701472292 | |
DACIA : 13 0C 165 03R | DACIA : | RENAULT : 7701473053 | |
DACIA : | DACIA : | RENAULT : 7701474019 | |
DACIA : | DACIA : | RENAULT : 7701474571 | |
DACIA : | DACIA : | RENAULT : 7701476674 | |
DACIA : | DACIA : | RENAULT : 7701476675 | |
DACIA : | DACIA : | RENAULT : 7701477184 | |
DACIA : | DACIA : | RENAULT : | |
DACIA : | NISSAN : 13070-00QAA | RENAULT : | |
DACIA : | OPEL : | RENAULT : | |
DACIA : R | OPEL : 93198653 | RENAULT : | |
DACIA : | RENAULT : R | RENAULT : | |
DACIA : | RENAULT : R | RENAULT : | |
DACIA : | RENAULT : T | RENAULT : | |
DACIA : | RENAULT : R | RENAULT : | |
DACIA : | RENAULT : 130C12131R | RENAULT : | |
DACIA : | RENAULT : 130C16503R | RENAULT : | |
DACIA : | RENAULT : | RENAULT : | |
DACIA : | RENAULT : | RENAULT : | |
DACIA : | RENAULT : | RENAULT : | |
DACIA : | RENAULT : | RENAULT : | |
DACIA : | RENAULT : | RENAULT : | |
DACIA : | RENAULT : | RENAULT : | |
DACIA : | RENAULT : | RENAULT : | |
DACIA : | RENAULT : | RENAULT : | |
DACIA : | RENAULT : | VAUXHALL : |
Q:What’s your after-sales service and warranty?
A: We promise to bear the following responsibilities when defective products were found:
1.12 months warranty from the first day of receiving goods;
2. Replacements would be sent with goods of your next order;
3. Refund for defective products if customers require.
Q:Do you accept ODM&OEM orders?
A: Yes, we provide ODM&OEM services to CHINAMFG customers, we also customize OEM box and packing as your requirements.
Q:What’s the MOQ?
A: MOQ is 10pcs for standardized products; for customized products, MOQ should be negotiated in advance. There is no MOQ for sample orders.
Q:How long is the lead time?
A: The lead time for sample orders is 3-5 days, for bulk orders is 5-15 days.
Q:Do you offer free samples?
A: Yes we offer free samples to distributors and wholesalers, however customers should bear freight. We DO NOT offer free samples to end users.
Q:How to place order?
A: 1. Email us the model, brand and quantity,shipping way of bearings and we will quote our best price for you;
2. Proforma Invoice made and sent to you as the price agreed by both parts;
3. Deposit Payment after confirming the PI and we arrange production;
4. Balance paid before shipment or after copy of Bill of Loading.
After-sales Service: | Full After Sale Service |
---|---|
Warranty: | 30000-50000km |
Type: | Tensioner Bearing |
Material: | Chrome Steel/Gcr-15 |
Tolerance: | P6 |
Certification: | ISO9001, TS16949 |
Samples: |
US$ 0/Set
1 Set(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
How do timing pulleys contribute to efficient power distribution?
Timing pulleys play a crucial role in ensuring efficient power distribution in various mechanical systems. Here’s how timing pulleys contribute to efficient power distribution:
1. Precise Timing and Synchronization:
Timing pulleys, in conjunction with timing belts or chains, synchronize the rotation of different components within a system. By maintaining precise timing between the input and output shafts, timing pulleys ensure that power is distributed accurately and efficiently. This synchronization prevents power loss due to misalignment or timing discrepancies.
2. Positive Drive System:
Timing pulleys create a positive drive system when paired with timing belts or chains. The teeth on the pulleys interlock with the teeth on the belt or chain, creating a firm grip that eliminates slippage. This positive drive ensures that power is efficiently transmitted from the driving pulley to the driven pulley without any energy loss.
3. Load Distribution:
Timing pulleys help distribute the load evenly across the system by transmitting power from the driving pulley to the driven pulley. The pulley’s design and tooth profile enable the load to be distributed over a larger contact area, reducing stress concentration on individual components. This even load distribution enhances the overall efficiency of power transmission.
4. Reduced Friction and Wear:
Timing pulleys, particularly those made of materials with low friction coefficients, minimize friction and wear during power transmission. The smooth engagement between the pulley teeth and the belt or chain reduces energy losses caused by friction. Additionally, materials with excellent wear resistance properties extend the lifespan of the pulleys, ensuring long-term efficiency.
5. Tension Control:
Timing pulleys, in combination with tensioner and idler pulleys, help maintain the appropriate tension in the timing belt or chain. Proper tension control ensures that the belt or chain remains securely engaged with the pulleys, preventing power loss due to slippage. By maintaining optimal tension, timing pulleys contribute to efficient power distribution throughout the system.
6. System Optimization:
Timing pulleys allow for system optimization by providing flexibility in gear ratios and power transmission configurations. By selecting pulleys with different diameters or tooth profiles, engineers can adjust the speed and torque distribution within the system. This optimization ensures that power is distributed efficiently, matching the requirements of the specific application.
Overall, timing pulleys ensure efficient power distribution by providing precise timing, creating a positive drive system, evenly distributing loads, reducing friction and wear, controlling tension, and enabling system optimization. These factors contribute to the overall efficiency, reliability, and performance of mechanical systems where timing pulleys are utilized.
How do timing pulleys impact the performance of 3D printers?
Timing pulleys play a significant role in determining the performance and accuracy of 3D printers. Here’s an explanation of how timing pulleys impact the performance of 3D printers:
1. Motion Control:
Timing pulleys, in conjunction with belts or chains, are used to control the movement of the print head and build platform in 3D printers. The motor drives the driving pulley, which is connected to the print head or build platform through a timing belt or chain. The driven pulley on the print head or build platform receives the rotational motion from the driving pulley, resulting in precise and synchronized movement. The accuracy and quality of the printed object depend on the precise control and synchronization facilitated by the timing pulleys.
2. Positioning Accuracy:
Timing pulleys contribute to the positioning accuracy of 3D printers. The teeth on the timing belt or chain mesh with the teeth on the pulleys, creating positive engagement. This ensures that the print head or build platform moves precisely according to the instructions from the control system. The accuracy of the timing pulley system directly affects the dimensional accuracy and surface finish of the printed object.
3. Speed and Acceleration:
Timing pulleys allow for control of the speed and acceleration of the print head and build platform in 3D printers. By varying the diameter or the number of teeth on the pulleys, different gear ratios can be achieved. This enables printers to control the speed and acceleration of the print head or build platform, affecting printing time, print quality, and the ability to handle intricate details and complex geometries.
4. Print Resolution:
The resolution of a 3D printer refers to the smallest feature size that can be accurately reproduced. Timing pulleys play a role in determining the achievable print resolution. The finer the pitch and the more teeth per unit length on the timing belt or chain, the higher the resolution that can be achieved. Timing pulleys with smaller teeth allow for finer positioning and more precise movement, enabling the printer to produce objects with intricate details and smooth surfaces.
5. Noise and Vibration:
Properly designed and maintained timing pulley systems contribute to reducing noise and vibration in 3D printers. Well-aligned and tensioned timing belts or chains, along with accurately machined pulleys, minimize backlash and ensure smooth and quiet operation. This is particularly important during rapid movements and changes in direction, as excessive noise and vibration can affect print quality and overall printer performance.
6. Maintenance and Durability:
The durability and maintenance requirements of the timing pulley system impact the overall performance of 3D printers. High-quality timing pulleys and belts or chains are essential to ensure longevity and reliable operation. Regular inspection, tensioning, and replacement of worn or damaged components are necessary to maintain optimal performance and prevent print quality issues caused by a degraded timing pulley system.
7. Extruder and Filament Control:
In addition to controlling the movement of the print head and build platform, timing pulleys may also be used in the extruder assembly of 3D printers. Timing pulleys help drive the filament feeding mechanism, ensuring consistent and controlled extrusion of the filament during the printing process. The accurate and synchronized movement facilitated by the timing pulleys contributes to maintaining filament tension and preventing issues such as under-extrusion or filament jams.
By understanding the impact of timing pulleys on 3D printer performance, manufacturers and users can optimize the design, calibration, and maintenance of the timing pulley systems to achieve accurate, reliable, and high-quality 3D prints.
In which industries are timing pulleys commonly employed?
Timing pulleys find application in various industries where precise motion control, accurate timing, and reliable power transmission are crucial. Here are some industries where timing pulleys are commonly employed:
1. Manufacturing and Automation:
Timing pulleys are extensively used in manufacturing and automation industries. They play a vital role in conveyor systems, robotic arms, pick-and-place machines, packaging equipment, and assembly lines. Timing pulleys ensure precise movement, synchronization, and positioning of components, facilitating efficient and automated production processes.
2. Automotive and Transportation:
The automotive and transportation industries rely on timing pulleys for engine timing and power transmission. Timing pulleys are used in internal combustion engines to synchronize the rotation of the camshaft and crankshaft, ensuring proper valve timing. They are also employed in various vehicle systems such as steering, air conditioning, and powertrain components.
3. Aerospace and Aviation:
In the aerospace and aviation industries, timing pulleys are utilized in applications that require precise motion control and synchronization. They are used in aircraft engines, flight control systems, landing gear mechanisms, and wing flap systems. Timing pulleys contribute to the safety, efficiency, and reliability of aircraft operations.
4. Medical and Healthcare:
In the medical and healthcare fields, timing pulleys are utilized in medical devices, diagnostic equipment, surgical robots, and imaging systems. They enable precise movement and positioning in equipment such as infusion pumps, robotic surgery systems, and CT scanners. Timing pulleys contribute to accurate procedures, patient safety, and improved healthcare outcomes.
5. Printing and Paper Handling:
Printing presses and paper handling equipment utilize timing pulleys to ensure precise paper feeding, registration, and tension control. Timing pulleys enable accurate and synchronized movement of paper rolls, sheets, or labels, ensuring high-quality printing and efficient paper handling processes.
6. Textile and Garment Industry:
In the textile and garment industry, timing pulleys are employed in textile machinery, knitting machines, and sewing equipment. They assist in controlling the movement of fabric, yarn, and threads, ensuring precise and synchronized operations. Timing pulleys contribute to the efficiency and quality of textile and garment production processes.
7. Industrial Automation and Robotics:
Timing pulleys have widespread usage in industrial automation and robotics applications. They are employed in robotic arms, CNC machines, automated guided vehicles (AGVs), and material handling systems. Timing pulleys enable precise and synchronized movement, enhancing productivity, accuracy, and efficiency in industrial automation processes.
8. Semiconductor and Electronics:
The semiconductor and electronics industries utilize timing pulleys in equipment such as wafer handling systems, pick-and-place machines, and semiconductor manufacturing equipment. Timing pulleys ensure precise positioning, alignment, and synchronization of delicate components, contributing to the manufacturing of high-quality electronic devices.
These are just a few examples of industries where timing pulleys are commonly employed. Their versatile nature and ability to provide precise motion control make them valuable components in various applications across different sectors.
editor by CX
2023-10-07